Introduction This blog compares harmonic mitigation techniques across various applications in real time. It examines different aspects of active and passive series and shunt filters, focusing on reducing harmonic loading in drive systems. It discusses the pros and cons of parallel and series approaches, as well as active and passive solutions, supplemented by practical results from several case st...
Overview As regulatory authorities impose ever-stricter requirements for power quality, utilities increasingly want to know which customer is imposing harmonics and flicker on the utility power system. As a result, we are often asked if we can determine the “direction” of harmonic power flow, and what can be done about flicker. Harmonic Power Flow Harmonics, like fundamental frequencie...
How Harmonics Form, Spread, and Clean Up in Non-Linear Loads 1. Introduction The industrial revolution changed life with technology, notably electrical power globally distributed by utilities. Today, power quality is essential for constant equipment operation, demanding glitch-free, stable power for domestic and industrial users. Utilities mandate high-quality equipment to prevent system power iss...
Harmonic Resonance Evaluation for Capacitor Banks Abstract: A utility operates feeder and substation capacitor banks on a 25.56kV distribution feeder. The utility uses frequency scan simulations to determine the effect of distribution feeder and substation capacitor banks on harmonic resonance and frequency response characteristics. It is assumed that the simulations will show that the f...
What interharmonics are & do and where they come from? Introduction The use of advanced power electronics and communication systems is improving power system efficiency, flexibility, and reliability, but it is also increasing interharmonic distortion. Knowledge of interharmonics, their sources, effects, measurement, limits, and mitigation will help the industry prevent interharmo...
Why Detect and Eliminate Harmonics? Understanding Harmonic Disturbances Harmonics in electrical distribution networks represent significant disturbances that can degrade the quality of electrical power and reduce system efficiency. These disturbances, caused by non-linear loads, introduce unwanted frequencies into the power system, resulting in several adverse effects. Main Ri...
Resonance and Active Harmonic Filters Resonance in power systems can lead to significant issues such as harmonic amplification, overvoltages, and equipment damage. Active Harmonic Filters (AHFs) play a crucial role in mitigating harmonic distortion and preventing resonance. Understanding how resonance occurs and how AHF can be used to manage it is key to maintaining a stable and efficient electric...
How do transformers and harmonic filters suppress harmonics? Harmonic Mitigation Techniques for Three-Phase Loads Three-phase loads do not produce triplen harmonics. Therefore, in environments dominated by three-phase loads, harmonic issues primarily arise from currents at the 5th, 7th, 17th, 19th, and higher harmonics. A harmonic mitigating transformer (HMT) can help reduce these ha...