Analysis of 3 Different Power Factor Correction Solutions: Capacitors, SVG, and AHF In today’s industrial and commercial environments, ensuring power quality is more than just good practice—it’s a necessity. Poor power quality can lead to equipment malfunctions, increased utility costs, and downtime. One major aspect of power quality is the power factor—a measure of ho...
China Power Quality Issues: Impacts, Costs, and Advanced Solutions In the rapidly evolving landscape of China's power sector, power quality issues have emerged as a critical challenge, demanding immediate attention and effective solutions. This article conducts a comprehensive analysis of the impacts, costs, and advanced equipment solutions related to power quality in China, drawing insight...
The combination of a Static VAR Generator (SVG) and Thyristor-Switched Capacitor (TSC) creates a high-performance hybrid reactive power compensation system. This setup leverages the fast dynamic response of the SVG with the cost-effective bulk compensation capability of TSC. How SVG + TSC Works SVG (Static VAR Generator) Uses a voltage-source converter (VSC) with IGBT...
What is "HT sensing" in reactive power compensation? In a typical HT sensing and low-compensation scheme: HT sensing: The system samples voltage and current on the high-voltage side (e.g., 10kV) using CTs and PTs. Low-side compensation: The actual compensation—either reactive power support (SVG/capacitors) or harmonic filtering (AHF)—is implemented on the low-voltage side (e.g., 400V)....
Why Capacitors Are the Preferred Choice for Reactive Power Compensation When it comes to low-voltage reactive power compensation, the conversation usually narrows down to two options: capacitor banks and Static Var Generators. Ask around, and you’ll likely hear one common reason why capacitors remain popular:“They’re cheaper.” That’s true—but the real answer goe...