Managing Non-Linear Load Harmonics with Active Power Filters Introduction Non-linear loads are becoming a significant challenge in today’s electrical systems. These loads cause the current to be non-sinusoidal, even when connected to a sinusoidal voltage source. This non-sinusoidal current contains harmonic currents that interact with the power distribution system, leading to v...
Introduction Harmonics in power systems have become a significant concern due to the widespread use of semiconductor-based loads, such as variable frequency drives (VFDs) and line-commutated DC drive systems. These harmonics can lead to various power quality issues, affecting both equipment performance and system reliability. Harmonics are integer multiples of the fundamental frequency. For exampl...
Harmonic Compensation Device and reactive power compensation device Harmonic Compensation Devices and Reactive Power Compensation Devices both play roles in power quality improvement, but they target different types of electrical issues. Here’s a breakdown of each and their key distinctions: Harmonic Compensation Device Function: Specifically designed to mitigate harmonics, which are distort...
Introduction Power quality refers to the characteristics of electric power supplied to end users, particularly its ability to ensure the proper functioning of electrical devices. With the increasing use of sensitive equipment such as programmable logic controllers, variable frequency drives (VFDs), and computers in modern industries, the tolerance for power disturbances such as voltage dips, swell...
IEC vs IEEE Standards for Active Harmonic Filters Explore key differences between IEC 61000 and IEEE 519 standards for Active Power Filters (APF), including harmonic limits, testing protocols, and adaptive solutions. Discover YT Electric’s globally compliant APF systems. Why Dual Compliance Matters for APF in Global Projects? Modern power quality challenges require activ...