Energy Efficiency and static var generator Energy Efficiency and Static Var Generator (SVG) are closely linked, as SVGs play a crucial role in improving the overall energy efficiency of electrical systems. Here’s how they are connected: 1. Power Factor Improvement: Static Var Generator SVG helps in maintaining a high power factor by providing reactive power compensation. A higher power facto...
Introduction Power quality is a general term used to describe the compatibility between connected equipment and its electrical supply. The supply system can be affected by changes to the frequency or amplitude of the voltage, the balance between phases on a three-phase system, and distortion levels of the original signals. The characteristics that are important and what can be tolerated by the con...
What is Motor Testing? Electrical maintenance programs are designed to enhance equipment reliability and uptime while reducing operational costs. Electric Motor Testing is often one of the first areas to be scaled back when cutting expenses. However, savvy companies recognize that neglecting proper maintenance programs can result in billions of dollars in lost revenue due to increased motor repair...
Reactive Power Compensation and Overcompensation Reactive Power Compensation and Over compensation are closely related concepts in power systems management, particularly in the context of maintaining an optimal power factor and ensuring the efficient operation of electrical networks. Reactive Power Compensation Reactive Power is the component of electrical power that oscillates between the source ...
Abstract Harmonic distortion in power systems is a critical challenge that electrical engineers face, especially in today's complex and technology-driven environments. The proliferation of non-linear loads—such as variable frequency drives, power electronic converters, and uninterruptible power supplies (UPS)—has led to an increase in harmonic distortions that degrade the quality of po...
The generation and impact of harmonic problems Harmonics in electrical systems are caused by nonlinear components, which distort the sine wave of the electrical current. As power electronics become more common, voltage distortion, or harmonics, also increases. Devices like variable frequency drives (VFDs), uninterruptible power supplies (UPS), and inverters introduce different types of harmonics i...
Managing Non-Linear Load Harmonics with Active Power Filters Introduction Non-linear loads are becoming a significant challenge in today’s electrical systems. These loads cause the current to be non-sinusoidal, even when connected to a sinusoidal voltage source. This non-sinusoidal current contains harmonic currents that interact with the power distribution system, leading to v...
What are Even and Odd order Harmonics? Even and Odd Order Harmonics refer to the classification of harmonics in an electrical system based on their frequency in relation to the fundamental frequency. Understanding the distinction between even and odd harmonics is important for analyzing and mitigating power quality issues. 1. Harmonics Overview: Fundamental Frequency: The base frequency of th...