A ship, particularly a modern, advanced vessel, is essentially a floating, highly concentrated town of power systems. The stability, efficiency, and reliability of its electrical system are directly related to the ship's operational safety, operating costs, and mission. The SVG, as a dynamic, precise, and high-performance reactive power compensation device, plays an irreplaceable role in...
In today’s rapidly evolving energy landscape, the transition toward cleaner and smarter technologies has become more than a global trend—it is a necessity. With the increasing demand for sustainable energy, the way we generate, store, and consume electricity is undergoing a fundamental transformation. Three key technologies stand at the center of this transition: EV charging stations, ...
We can definitively state that for high-power DC charging piles in gas stations or service areas, it is highly recommended, and in many cases essential, to install a Static Var Generator (SVG) or an Active Power Filter (APF) alongside them. The ideal solution is often a hybrid device that combines both functions, such as a Hybrid-APF or an Active Reactive Compenser (ARC). This is not an "opti...
How to scientifically configure Static Var Generators (SVGs) and Active Power Filters (APFs) in wind farm applications. Wind farms, particularly those using Doubly-Fed Induction Generators (DFIGs), are not only power producers but also major sources of power quality issues. The need and logic for configuring mitigation equipment here are significantly different from traditional commercial and indu...
How to scientifically configure Static Var Generators (SVGs) and Active Power Filters (APFs) in photovoltaic (PV) power plants. The power quality management of PV plants shares similarities with wind farms but has its own unique emphases. The core logic is: PV inverters are themselves harmonic sources and require reactive power support, while the grid has strict requirements for reactive powe...
The Short Summary A healthy AHF typically produces two types of noise: A low hum from the internal reactor (inductor) and cooling fans. This is normal. A high-frequency "switching" whine or buzz from the Insulated-Gate Bipolar Transistors (IGBTs). This is usually very faint. If the noise becomes loud, intrusive, or changes significantly, it is often a sign of a problem. Detailed Breakdow...